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1. INTRODUCTION

Suppose X is a real Banach space and Y a linear subspace of X. Then a
projection from X onto Y is a linear map whose range is Y and which is
idempotent on Y, i.e., Py = y for all y in Y. In all cases it is possible to find
a lower bound for the norm of any projection from a given Banach space X
onto a fixed linear subspace Y. The greatest lower bound of this set is
known as the projection constant of the given subspace with respect to the
space in which it lies. Sometimes the word relative is used to indicate the
fact that X is fixed. A projection whose norm is equal to this constant is
called a minimal projection. In this generality there is no way of knowing
whether such a projection exists or if it does, how it is characterised.
However, if Y is finite-dimensional, then the existence question may be set
tled affirmatively.

In this paper we investigate some problems first discussed by Jameson
and Pinkus [1J. They exhibited a minimal projection from C(Sx T) onto
C(S) + C(T), where Sand T are compact Hausdorff spaces each containing
infinitely many points. In order to be sure that their projection was
minimal they calculated the projection constant for the subspace
C(S) + C(T) and found it to be 3. In this paper we shall calculate the pro
jection constant for the subspace L 1(S) + L 1(T) as a subspace of L 1(S x T)
and Loo(S) + L oo ( T) as a subspace of Loo(S x T). Note that some restric
tions on the measure spaces Sand T are inevitable. For example, in order
that L 1(S) and L 1(T) can be regarded as subspaces of L 1(S x T) we need S
and T to have finite measure. A further restriction, corresponding to the
assumption that Sand T contain infinitely many points in [1 J, will also be
needed.
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II. THE FINITE-DIMENSIONAL CASE

In this section we shall use W to denote the linear space of n-vectors.
Points in wm can then be identified with matrices of size n x m. We shall
use both II and lro-norms. In 17m this can be given in its most general form
by choosing a "weight matrix" W = (wij) such that wij> 0, 1~ i~ n,
1~ j ~m, and L7= I L~ I W ij = 1. Then for any matrix A E 17m we define

n m

IIAII I = L L wijlaij!'
i= Ij= 1

In the same manner we define for A E I':x,m

1
IIAllro = max -Iaijl·

l~i~nWu
ls.;,j~m

We shall consider the subspace M £ IR nm
, where M "=" IR n + IR m

• Here the
obvious abuse of notation has occurred in that IRn + IRm stands for the set
of matrices which are the sum of a matrix whose columns are constant and
a matrix whose rows are constant. It will be important at a later point to
observe that if X is such a matrix then

1~ r, k ~ n; 1~ s, I ~ m.

We shall consider projections from IR nm onto M and obtain a complete
description of the minimal projection in certain cases. It will be important
to observe that our normalization is such that 17m and I':: are in duality.
Now let P be a projection from W m onto M. It is convenient to describe
the action of P (following [IJ) on the matrices Em which have zero entries
everywhere except the (r, s) position where they are unity. We shall write

LEMMA 2.1.

(i)

(ii)

1 n m

IIPlloo =max- L L laijl wm
'.J W ij r = I s = I

1 n m

IIPII I =max- L L laijl wij'
r.s W rs ;=lj=l
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Proof Part (i) is a straightforward computation, and (ii) may be
obtained by recalling

IIPIII=IIP*II(li'"l.= sup IIP*tPlioo
11;1100 = 1
;e (Ii).

1 I n m I= sup max- L L aijtPij
11;1100= 1 r,s W rs i= U= 1

1 n m

~max- L L laij\ wij'
r.s W rs ;= 1 j= 1

Equality is easily attainable at this final step.
In fact Lemma 2.1 is nothing more than the column and row sum for

mulae for II and loo-norms of matrices when regarded as operators
IRnm

..... IRnm
• Also, the result is not limited to projections but holds for any

linear operator from IRnm to itself. In order that P should be a projection
we require that

n

(i) L aij = bsj '
r= 1

m

(ii) L a'ys = Dr;'
s= 1

(iii) aij = akj + a~t - aki,

1~ i ~ n; 1~ s, j ~ m

1~ r, i, k ~ n; 1~ s, j, I~ m.

From these three conditions we obtain

n m n m

L L at= L L {aVj +a7I -aVJ
i=lj=1 ;=lj=1

m n n

= L Djj + L bii - L D\i;
j=1 ;=1 i=1

i.e.,

n m

(iv) L L ag = m +n - 1.
;= Ij= 1

These four conditions appeared in [1].

THEOREM 2.2. Let P be a projection from IRnm onto M. Then IIPII 1 and
IIPlloo are at least (l/nmmax;,jwij) (3-2 L~~I :L:"=I a~~wrs) and

(
min . .w .. )( n m )

I,) Y 3 - 2 L L a~~wrs respectively.
max;,jwij r= 1 s= 1
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Proof We consider first

n m

I L WI} laijl
r,i= 1 s,) = 1

nmnm mn m

= - L L I L a~t W ij +2 L L W rj La;;
i=!j=lr~ls~1 j=]r=1 s~1

n m n n m

+2 L L W is L a~:-2 L I a~:Wrs
i=ls=1 r=1 r=1 s=1

m n n m n m

= - 1+ 2 L L W rj + 2 I L W is - 2 I L a~: W rs
j=lr=l

n m

= 3 - 2 L I a;:: W rs"

r= 1 s= I

i= 1 s=] r= 1 s~ 1

Hence there exist a pair (io, io) and a pair (ro, so) such that

n m n m

L L la~~ol ~3-2 L L a;:wrs
r=]s=1 r=ls=]

and so

If the W rs are all equal, i.e., W rs = Ijnm, then we obtain a simpler version of
Theorem 2.2.

COROLLARY 2.3. Let W rs = l/nm. Then both 1\ PII 00 and II PI! 1 are at least
3 - 2(n + m - 1)jnm.

Proof The result follows directly from Theorem 2.2 and condition (iv).
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THEOREM 2.4. (i) The minimal projection from 17m onto M has norm
3 - (2/nm)(n +m - 1), when w's = l/nm,

(ii) (see [IJ). The minimal projection from I'::: onto M has norm
3 - (2/nm )(n + m - 1), when w's = l/nm.

Proof The given number is already a lower bound from Corollary 2.3
and the following projection (again from [1 J) has the appropriate norm:

1a'S= __ r # i, s#j
If nm'

n-l
r = i, s#j

nm

m-l
r # i, s=}

nm

n+m-l
r = i, s=j.

nm

THEOREM 2.5. The minimal projection from l'r onto M has norm one and
is identical with the minimal projections for 17m

, I'::: given in the proof of the
previous theorem.

Proof All that needs to be established here is that the appropriate pro
jection is indeed the orthogonal projection. For this we write any point
A E 12m as A = G+ H + X, where G+ HEM and X E M i- if and only if
L7= I xij= L}: I xij= 0 for 1~ i~ nand 1~j~ m. To see this suppose first
X has the latter property. Then, if the rows of G are constant, <G, X) =
Li Li g ijx ij = Li gi1 Li X ij = O. The proof for the columns of H being con
stant is similar. Alternatively, suppose X E Mi-. Then, for example,
<H, X) = 0 for -all matrices H which are constant along columns. This
means that Li Li hijxij = Li h li Li xij = 0, which gives one half of
the required condition on X. The other half follows similarly. Now let P be
the projection defined in the proof of Theorem 2.4. We shall indicate
why B - PB E Mi- for all BE 12m . For example, we must establish that
L:7=1 (B-PB)ij=O for 1~j~m. Now

n n

= L bij- L b,s L a'ij.
i= 1 r,s i= 1



320

Furthermore,
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n -1 n-1L aij=- (n-1)+--, so/- j
i=l nm nm

(m - 1)(n - 1) n +m - 1
= + ,s=j

nm nm

III. THE INFINITE-DIMENSIONAL CASE

In this section we suppose that (S, r, p) and (T, e, v) are a-finite
measure spaces with (S x T, (/J, a) being constructed in the usual way. Via
some lemmas and observations we aim to establish the foIlowing theorem.

THEOREM 3.1. (i) Let Sand T be a-finite, non-atomic measure spaces.
Then the minimal projections from Loo(S x T) onto Loo(S) + Loo(T) have
norm 3 and a minimal projection is given by

(Poof)(s, t)=-.!.- f f(x, t)dJi(x)+~f f(s, y)dv(y)
Po So Vo To

- _1_ If f(x, y) da(x, y),
Jio Vo So x To

where So and To are any sets offinite measure in Sand T, respectively, hav
ing measure Jio and Vo'

(ii) Let Sand T be finite non-atomic measure spaces. Then the
minimal projections from L1(Sx T) onto L1(S)+L1(T) have norm 3 and a
minimal projection is given by the same definition as in (i), where we may
take So = S and To = T. We denote this projection by Pl'

We do not claim any originality for Theorem 3.1(i) since it can easily be
obtained from results in [1], combined with the arguments given below.

The assumption that the measure spaces Sand T are non-atomic allows
us to take Sl' S2'"'' Sn in Sand T1, T2 , ... , Tn in T, where n is any natural
number and {Si}7, {Ti }7 are pairwise disjoint measurable sets. We shall
assume, by scaling Sand T if necessary, that Ji(SJ = v(TJ = lin for
1~ i ~ n. Of course, non-atomicity is a convenient but not a necessary con
dition for the existence of such sets. Throughout this section it will be con
venient to reserve the notation It exclusively for IR n2 with the norm as
defined in Section II having weights wi} = n -2. Similarly, l~ will have norm
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with these same weights. For simplicity, we shall assume that L 1(8), L1(T)
and L 1(8 x T) are understood to imply finite measure spaces, while L oo (8),
Loo(T) and L oo (8x T) imply a-finite measure spaces. We shall define maps
QI: L 1(8 x T) -+ 172

and R I: 172
-+ L 1(8 x T) by

(QJ!)i,j=n 2If. f(s,t)da,
s,x TJ

n

(RIA)(s, t) = L aijXSix TJ'
i,j~ I

We can also use the same definitions for maps Qoo: L oo (8x T) -+ I: and
Roo: I: -+ L oo (8 x T),

LEMMA 3.2. (i) IIQIII = [IRIII = 1.

(ii) IIQool1 =n2 and IIRool1 =n-2.

Proof We shall only establish (ii) since the computations are all
straightforward. Firstly,

n2 sup maxl(Qoof)ijl~n2 sup maxn2 ff If(s,t)lda~n2.
IlfII", ~ I ',J IIf11", = I I.J SiX Tj

The function f given by f(s, t) = 1 almost everywhere provides attainment.
Secondly,

sup esssupl(RooA)(s,t)l= sup esssupif aijXSiXTjl
II All '" = 1 (s,t)eSxT IIAII", = I (s.t)eSxT i,j=1

= sup max laijl =n-2.
IIAII", = I i,j

This completes the proof.
Now comes the result on which this section rests. It is purely algebraic in

character.

LEMMA 3.3. (i) Let P be a projection from L I(8x T) onto
L I(8) + L1(T). Then QI PRJ is a projection from 172

onto M.

(ii) Let P be a projection from L oo (8x T) onto L oo (8)+ Loo(T). Then
Q 00 PRoo is a projection from l'to onto M. .

Proof In either case there is no doubt that the range and domain of the
given operator are IR n2

• For convenience in the following few lines we shall
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use Q to denote Q I or Q cIJ and R to denote R I or R cIJ' We begin by show
ing that the range of QPR lies in M. It will suffice to show

where I ~ i, j, k, 1~ n and A E W
2
• Since P is a projection onto either

Loo(S) + Loo(T) or LI(S) + LI(T) we know that if PRA = y then y can be
written as the sum of two univariate functions g (a function of s) and h (a
function of t). Then

(QPRA)ij+(QPRA)k/=n 2 II (g+h)da+n 2 If (g+h)da
~x~ ~xn

= n J gdJi + nf hdv + n J gdJi + n f hdv
s, TJ Sk TI

= (QPRA)i/+ (QPRA)kj'

To verify that QPR is a projection on M we shall content ourselves with
showing that if A is a matrix whose rows are constant then QPRA = A. The
full result then follows from a similar argument when A is constant along
columns plus the usual linearity. So suppose A = (aij)' aij=k;, I ~j~n.
Then it is clear that RA E Loo(S) and so PRA = RA. Then it is immediate
from the form of Q that QRA = A.

Proof of Theorem 3.1. Given any projection P from either L oo (8 x T)
onto L oo (8) +Loo(T) or LI(Sx T) onto L 1(8) + L1(T) we may associate P
with (respectively) a projection from I: onto M or 172

onto M using the
operators Qu Qoo, R I and Roo. Again writing Q for either QI or Qoo and R
for either R 1 or Roo an application of Corollary 2.3 gives

3- 22(2n-I)~IIQPRII~IIQIIIIPIIIIRII=IIPII.
n

Since this inequality holds for all values of n we obtain II PII ~ 3. It is now
elementary to verify from the definitions of PI and P 00 that both have
norm at most 3. This concludes the proof.

Notice that when 8 and T have finite measure we may choose So and To
in the definition of P 00 to coincide with 8 and T. In this case we can con
struct functions which are "nearly extremal" for PI and P 00' Diagram
matically this is done in each case, when 8 = T = [0, 1].
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Case (i). L 1(S x T).
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O'------------'-----_----J

Case (ii). Lco(Sx T)

"--------------18

I.(s,t)= +1
OL.--- --J

IV. REMARKS

11/.11 co = 1

A natural question to ask at this point is whether we can determine the
projection constants for Lp(S) +L p(T) as subspaces of Lp(S x T), where
1~ P~ 00. We have already dealt with the cases p = 1, 00. The case p = 2
is, of course, the familiar Hilbert space case and the projection constant is
necessarily unity there, with the usual orthogonal projection being the
minimal projection. The dependence of the projection constant on p is an
interesting question which is currently receiving attention.

We conclude with a brief comment about the difference between the
problem in continuous function spaces and integrable function spaces. In
[1] the transfer of the finite-dimensional results to the continuous function
space was a matter of a simple identification. Once we lose the bounded
ness of the point evaluation functionals that identification becomes a little
more intricate, as seen in Section III.
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